有限元法

来自计算思维百科
跳转至: 导航搜索

这种方法是把计算区域剖分成大小不等的三角形(或其他形状的)单元,然后在各单元上用适当的插值函数来代替未知函数。根据变分原理,可将偏微分方程化成代数方程来求解。这种方法具有很广泛的适应性,特别适于求解具有复杂边界形状和物理条件的问题,而且很容易在计算机上实现。1970年以来已研究出一些适用于广泛的线性问题的有限元通用程序,对工程设计起很大作用。按照有限元法剖分的思想,把汽车外壳剖分成大小不等的许多三角形单元,而对弯曲边界只须裁弯取直即可。在应力变化剧烈和要求精确计算的地方,须把单元取得小些;在变化不剧烈的地方则可取得大些。用这种方法不仅可以适应复杂的区域,还可以尽量减少总的单元数目,从而减少未知量的数目。如果在有限差分方法中用矩形网格,则较难处理如此复杂的区域。