人机大战

来自计算思维百科
跳转至: 导航搜索
人机大战1.png

2016年3月,美国谷歌公司人工智能“阿尔法围棋(AlphaGo)”三连胜世界围棋冠军李世石,“人机大战”引全社会热烈关注,科技又一次展示了爆炸性的发展速度和力量。对此,社会各界议论纷纷。

事件解析

阿尔法围棋(AlphaGo)是一款围棋人工智能程序,由位于英国伦敦的谷歌(Google)旗下DeepMind公司的戴维·西尔弗、艾佳·黄和戴密斯·哈萨比斯与他们的团队开发,这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。2015年10月阿尔法围棋以5:0完胜欧洲围棋冠军、职业二段选手樊麾;2016年3月对战世界围棋冠军、职业九段选手李世石,并以4:1的总比分获胜。

AlphaGo是一个由高级搜索树与深度神经网络相结合的程序。神经网络包含12个处理层,用以描述棋盘及棋法,每一层则包含数百万个人工神经元,各层神经元之间的联结通过训练确定。其中的“决策网络”负责选择走棋策略,“价值网络”部分负责评估态势并预测环境。谷歌方面用收集的人类围棋高手的3000万步围棋走法,并用这些经验数据来训练神经网络。与此同时,AlphaGo也自行研究新战略,在它的神经网络之间运行了数千局对局,生成新的经验数据以对所训练的神经网络进行强化学习。由于它可以利用Google云平台不停地练习、练习、再练习,每一秒都在进步,永不停歇,由此所生成的训练数据无穷无尽,一个典型呈现“流”特征的大数据。所有算法训练通过Google云平台完成。

工作原理

AlphaGo的主要工作原理是“深度学习”。“深度学习”是指多层的人工神经网络和训练它的方法。一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就像生物神经大脑的工作机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理, 这些大脑是多层神经网络跟那些Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器网络处理图片一样。经过过滤,13 个完全连接的神经网络层产生对它们看到的局面判断。

运用的计算思维

AlphaGo利用计算机模拟生物神经大脑发生的本质过程,体现了仿真的计算思维。

人下棋是从当前的局部出发,通过思考此后少数几步的可能性,并凭直觉判断对全局的影响来行棋。”而AlphaGo则采用蒙特卡洛树搜索算法,从整体出发,妥善运用系统能力,有效地利用既有的资源,避免浪费,是使问题得到最优求解,体现了规划的计算思维。